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1. Abstract

This paper discusses preliminary work on standardizing
and implementing a remote procedure call (RPC) mecha-
nism for grid computing. The GridRPC API is designed
to address one of the factors that has hindered widespread
acceptance of grid computing – the lack of a standardized,
portable, and simple programming interface. In this paper,
we examine two concrete implementations of the GridRPC
API based on two different grid computing systems: Net-
Solve and Ninf. Our initial work on GridRPC shows that
client access to existing grid computing systems such as
NetSolve and Ninf can be unified via a common API, a task
that has proven to be problematic in the past. In addition
to these existing grid computing systems, the minimal API
defined in this paper provides a basic mechanism for imple-
menting a wide variety of other grid-aware applications and
services.
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2. Introduction

Although Grid computing is regarded as a viable next-
generation computing infrastructure, its widespread adop-
tion is still hindered by several factors, one of which is
the question “how do we program on the Grid (in an easy
manner)”. Currently, the most popular middleware infras-
tructure, the Globus toolkit, by and large provides the ba-
sic, low-level services, such as security/authentication, job
launching, directory service, etc. Although such services
are an absolute necessity especially provided as a common
platform and abstractions across different machines in the
Grid for interoperability purposes (as such it could be said
that Globus is a GridOS), there still tends to exist a large gap
between the Globus services and the programming-level ab-
stractions we are commonly used to. This is synonymous to
the early days of parallel programming, where the program-
ming tools and abstractions available to the programmers
were low-level libraries such as (low-level) message pass-
ing and/or thread libraries. In a metaphoric sense, program-
ming directly on top of only Globus I/O can be regarded as
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performing parallel programming using only the Linux API
on a beowulf cluster.

By all means there have been various attempts to pro-
vide a programming model and a corresponding system or
a language appropriate for the Grid. Many such efforts have
been collected and catalogued by the Advanced Program-
ming Models Research Group of the Global Grid Forum
[16]. One particular programming model that has proven to
be viable is an RPC mechanism tailored for the Grid, or
“GridRPC”. Although at a very high level view the pro-
graming model provided by GridRPC is that of standard
RPC plus asynchronous coarse-grained parallel tasking, in
practice there are a variety of features that will largely hide
the dynamicity, insecurity, and instability of the Grid from
the programmers. These are namely:

� Ability to cope with medium to coarse-grained calls,
with call durations ranging from ��� second to � �

week.

� Various styles of asynchronous, task-parallel program-
ming on the Grid, with thousands of scalable concur-
rent calls.

� “Dynamic” RPC, e.g., dynamic resource discovery and
scheduling.

� Scientific datatypes and IDL, e.g., large matrices
and files as arguments, call-by-reference and shared-
memory matrix arguments with sections/strides as part
of a “Scientific IDL”.

� Grid-level dependability and security, e.g., grid secu-
rity with GSI, automated fault tolerance with check-
point/rollback and/or retries.

� Simple client-side programming and management, i.e.,
no client-side IDL management and very little state left
on the client.

� Server-side-only management of IDLs, RPC stubs,
“gridified” executables, job monitoring, control, etc.

� Very (bandwidth) efficient—does not send entire ma-
trix when strides and array-sections are specified.

As such, GridRPC allows not only enabling individual
applications to be distributed, but also can serve as the basis
for even higher-level software substrates such as distributed,
scientific components on the Grid. Moreover, recent work
[21] has shown that GridRPC could be effectively built upon
future Grid software based on Web Services such as OGSA
[12].

Some representative GridRPC systems are Netsolve [9],
and Ninf [18]. Historically, both projects started about the
same time, and in fact both systems facilitate similar sets

of features as described above. On the other hand, be-
cause of differences in the protocols and the APIs as well as
their functionalities, interoperability between the two sys-
tems has been poor at best. There had been crude attempts
at achieving interoperability between the two systems using
protocol translation via proxy-like adapters [18], but for var-
ious technical reasons full support of mutual features proved
to be difficult.

This experience motivated the need for a more unified
effort by both parties to understand the requirements of the
GridRPC API, protocols, and features, and come to a com-
mon ground for potential standardization. In fact, as the
Grid became widespread, the need for a unified standard
GridRPC became quite apparent, in the same manner as
MPI standardization, based on past experiences with dif-
ferent message passing systems, catapulted the adoption
of portable parallel programming on large-scale MPPs and
clusters.

This paper reports on the current status of GridRPC stan-
dardization. Based on the lessons and experiences learned
from the MPI standardization process as well as deployment
of respective systems, both groups determined several de-
sign criteria as follows:

1. A small team of people experienced in GridRPC de-
sign and deployment would collaboratively design the
API, taking into account the current RPC designs from
Netsolve and Ninf as well as existing RPC standards
such as CORBA.

2. The initial goal is to standardize the API so that pro-
grammers can assume portability of their source across
the platforms. The protocol standardization is more
difficult and will be dealt with eventually (this is the
same situation with MPI, and CORBA until IIOP was
standardized.)

3. Define a minimal set of features first, then investigate
if higher-level features could be built on top of the min-
imal features and their API.

4. Have several reference implementations, if possible,
based on existing Netsolve/Ninf code, or even a new
code base.

The rest of the paper will describe the fundamental fea-
tures of the GridRPC model, the proposed standard API,
and the details of two reference implementations.

3. The GridRPC Model and API

In this section, we informally describe the GridRPC
model and the functions that comprise the API. Appendix
A contains a detailed listing of the function prototypes.
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3.1 Function Handles and Session IDs

Two fundamental objects in the GridRPC model are
function handles and the session IDs. The function han-
dle represents a mapping from a function name to an in-
stance of that function on a particular server. The GridRPC
API does not dictate the mechanics of resource discovery
since different underlying GridRPC implementations may
use vastly different protocols. Once a particular function-to-
server mapping has been established by initializing a func-
tion handle, all RPC calls using that function handle will be
executed on the server specified in that binding. A session
ID is an identifier representing a particular non-blocking
RPC call. The session ID is used throughout the API to
allow users to obtain the status of a previously submitted
non-blocking call, to wait for a call to complete, to cancel a
call, or to check the error code of a call.

3.2 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the
MPI initialize and finalize calls. Client GridRPC calls be-
fore initialization or after finalization will fail.

� grpc initialize reads the configuration file and
initializes the required modules.

� grpc finalize releases any resources being used
by GridRPC.

3.3 Remote Function Handle Management Func-
tions

The function handle management group of functions al-
lows creating and destroying function handles.

� grpc function handle default creates a new
function handle using the default server. This could be
a pre-determined server name or it could be a server
that is dynamically chosen by the resource discovery
mechanisms of the underlying GridRPC implementa-
tion, such as the NetSolve agent.

� grpc function handle init creates a new
function handle with a server explicitly specified by
the user.

� grpc function handle destruct releases the
memory associated with the specified function handle.

� grpc get handle returns the function handle cor-
responding to the given session ID (that is, correspond-
ing to that particular non-blocking request).

3.4 GridRPC Call Functions

The four GridRPC call functions may be categorized by
a combination of two properties: blocking behavior and
calling sequence. A call may be either blocking (syn-
chronous) or non-blocking (asynchronous) and it may use
either a variable number of arguments (like printf) or an
argument stack calling sequence. The argument stack call-
ing sequence allows building the list of arguments to the
function at runtime through elementary stack operations,
such as push and pop.
� grpc call makes a blocking remote procedure call

with a variable number of arguments.
� grpc call async makes a non-blocking remote

procedure call with a variable number of arguments.
� grpc call argstack makes a blocking call using

the argument stack.
� grpc call argstack async makes a non-

blocking call using the argument stack.

3.5 Asynchronous GridRPC Control Functions

The following functions apply only to previously sub-
mitted non-blocking requests.
� grpc probe checks whether the asynchronous

GridRPC call has completed.
� grpc cancel cancels the specified asynchronous

GridRPC call.

3.6 Asynchronous GridRPC Wait Functions

The following five functions apply only to previously
submitted non-blocking requests. These calls allow an ap-
plication to express desired non-deterministic completion
semantics to the underlying system, rather than repeatedly
polling on a set of sessions IDs. (From an implementation
standpoint, such information could be conveyed to the OS
scheduler to reduce cycles wasted on polling.)
� grpc wait blocks until the specified non-blocking

requests to complete.
� grpc wait and blocks until all of the specified non-

blocking requests in a given set have completed.
� grpc wait or blocks until any of the specified non-

blocking requests in a given set has completed.
� grpc wait all blocks until all previously issued

non-blocking requests have completed.
� grpc wait any blocks until any previously issued

non-blocking request has completed.
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3.7 Error Reporting Functions

Of course it is possible that some GridRPC calls can fail,
so we need to provide the ability to check the error code of
previously submitted requests. The following error report-
ing functions provide error codes and human-readable error
descriptions.

� grpc perror prints the error string associated with
the last GridRPC call.

� grpc error string returns the error description
string, given a numeric error code.

� grpc get error returns the error code associated
with a given non-blocking request.

� grpc get last error returns the error code for
the last invoked GridRPC call.

3.8 Argument Stack Functions

When describing the GridRPC call functions, we men-
tioned that there is an alternate calling style that uses an
argument stack. With the following functions it is possible
to construct the arguments to a function call at run-time.
When interpreted as a list of arguments, the stack is or-
dered from bottom up. That is, to emulate a function call
f(a,b,c), the user would push the arguments in the same
order: push(a); push(b); push(c);.

� newArgStack creates a new argument stack.

� pushArg pushes the specified argument onto the
stack.

� popArg removes the top element from the stack.

� destructArgStack frees the memory associated
with the specified argument stack.

4. Implementations

Since the GridRPC interface does not dictate the imple-
mentation details of the servers which execute the proce-
dure call, there may be multiple different implementations
of the GridRPC API, each having the ability to communi-
cate with one or more Grid computing systems. In fact, hav-
ing multiple implementations is desirable because it allows
GridRPC to fulfill its goal of unifying different existing sys-
tems. In this section, we describe two implementations of
the GridRPC API, one implemented on top of NetSolve and
the other on top of Ninf.

Figure 1. Overview of NetSolve

4.1 GridRPC over NetSolve

NetSolve [4] is a client-server system which provides re-
mote access to hardware and software resources through a
variety of client interfaces, such as C, Fortran, and Matlab.
Since NetSolve’s mode of operation is in terms of RPC-
style function calls, it provides much of the infrastructure
needed to implement GridRPC.

4.1.1 Overview of NetSolve

A NetSolve system consists of three entities, as illustrated
in Figure 1.

� The Client, which needs to execute some function re-
motely. In addition to C and Fortran programs, the
NetSolve client may be an interactive problem solving
environment, such as Matlab or Mathematica.

� The Server executes functions on behalf of the clients.
The server hardware can range in complexity from a
uniprocessor to a MPP system and similarly the func-
tions executed by the server can be arbitrarily complex.
Server administrators can straightforwardly add their
own software without affecting the rest of the NetSolve
system.

� The Agent is the focal point of the NetSolve system.
It maintains a list of all available servers and performs
resource selection for all client requests as well as en-
suring load balancing of the servers.

lee@aero.org [Page 4]



GWD-I (Informational) July 2002

In practice, from the user’s perspective the mechanisms
employed by NetSolve make the remote call fairly transpar-
ent. However, behind the scenes, a typical call to NetSolve
involves several steps, as follows:

1. The client queries the agent for an appropriate server
that can execute the desired function.

2. The agent returns a list of available servers, ranked in
order of suitability.

3. The client attempts to contact a server from the list,
starting with the first and moving down through the
list. The client then sends the input data to the server.

4. Finally the server executes the function on behalf of
the client and returns the results.

4.1.2 Using NetSolve to Implement GridRPC

Currently we have a full implementation of the GridRPC
API running on top of the NetSolve system. An impor-
tant factor in enabling the implementation of GridRPC in
NetSolve is the strong similarity of their APIs. For ex-
ample, grpc call() and grpc call async() map
directly into the netsolve() and netsolve nb()
calls. grpc probe() and grpc cancel() map into
the netslpr() and netslkill() calls. Some of the
other GridRPC functions that do not map directly to the
NetSolve API can be implemented in terms of those that
do. For example, grpc wait and, grpc wait or,
grpc wait any, and grpc wait all, are all imple-
mented using the elementary grpc wait function. Some
GridRPC functions cannot be expressed in terms of another
existing function, so we implemented them from scratch.
The function handle creation and destruction functions fall
into that category since the function handle concept does
not exist in NetSolve. Also, the argument stack calling se-
quence required some slight modification to the NetSolve
client because it previously only supported the variable ar-
gument list calling sequence.

Besides the advantageous similarity in these APIs, Net-
Solve has several properties that make it an attractive
choice for implementing GridRPC: fault-tolerance, load-
balancing, and security.

NetSolve handles fault detection and recovery in a way
that is transparent to the user. The agent is constantly mon-
itoring the status of all the servers so that in case of a prob-
lem, the agent can choose a new server to handle the prob-
lem. The client software submits the problem to the new
server, but the user is unaware of the resubmission, similar
to the way that the user of a TCP socket is unaware of the
retransmission of packets. To facilitate detection of server
failures and network problems, NetSolve has integrated the
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Figure 2. Overview of Ninf-G

Network Weather Service [25] and the Heart Beat Monitor
[23] from Globus.

NetSolve strives to schedule the use of the computational
resources in the most efficient manner possible. To that end,
NetSolve employs a load-balancing strategy that takes into
account several system parameters, such as network band-
width and latency, server workload and performance, and
complexity of the function to be executed. The NetSolve
agent uses this load-balancing algorithm to select the most
suitable server to execute a given request, thereby providing
the user with the best response time as well as maintaining
balanced usage of all the hardware resources.

Starting with version 1.4, NetSolve has support for basic
Kerberos authentication. Kerberos is a network authenti-
cation protocol “designed to provide strong authentication
for client/server applications by using secret-key cryptogra-
phy”. Using Kerberos, the NetSolve client must prove its
identity to the server before being allowed to execute a task
on that server.

4.2 GridRPC over Ninf

4.2.1 Overview of Ninf-G

Ninf-G is a re-implementation of the Ninf system [18] on
top of the Globus Toolkit [11]. The Globus toolkit provides
a reference implementation of standard (or subject to pro-
posed standardization) protocols and APIs for Grid com-
puting. Globus serves as a solid and common platform for
implementing higher-level middleware and programming
tools, etc., ensuring interoperability amongst such high-
level components, one of which is Ninf-G.

Figure 2 shows an overview of the Ninf-G system in this
regard.

Ninf-G is designed focusing on simplicity. In contrast
with NetSolve, Ninf-G does not provide fault detection, re-
covery or load-balancing by itself. Instead, Ninf-G assumes
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that backend queuing system, such as Condor[20], takes re-
sponsibility for these functionality.

Ninf-G fully deploys Globus Security Infrastracture. It
means that not only all the components are protected prop-
ery, but also they can utilize other Globus components, such
as GridFTP servers, seamlessly and securely.

Client API. Largely speaking, Ninf-G has two categories
of API. One is the GridRPC API which is discussed in this
paper, and another is the Ninf API which is provided only
for compatibility with the old Ninf system. Ninf-G also pro-
vides various other tools to “gridify” libraries and applica-
tions, such as a compile driver which automates the compi-
lation and linkage of Ninf-G client programs.

Server side IDL. In order to “gridify” a library, the Ninf
library provider describes the interface of the library func-
tion using the Ninf IDL to publish his library function,
which are only manifested and handled at the server side.
Besides supporting access specifiers such as IN and OUT
denoting whether an argument is read or written, the Ninf
IDL supports datatypes mainly tailored for serving numer-
ical applications. For example, the basic datatypes include
scalars and their multi-dimensional arrays. There are also
special provisions such as support for expressions involv-
ing input arguments to compute array sizes, designation of
temporary array arguments that need to be allocated on the
server side but not transferred, etc. This allows direct “grid-
ifying” of existing libraries that assume array arguments
to be passed by call-by-reference (thus requiring shared-
memory support across nodes via software), and supple-
menting the information lacking in the C and Fortran type-
systems regarding array sizes, array stride usage, array sec-
tions, etc.

Ninf-G and the Globus toolkit. Ninf-G employs the fol-
lowing components from the Globus toolkit.

� GRAM (Globus Resource Allocation Manager) is a
“secure inetd” which authenticates clients using GSI-
based certificates, maps to the local user account, and
invokes executable files.

� MDS (Monitoring and Discovering Service) is a direc-
tory service to provide resource information within the
Grid. Ninf-G uses the MDS to publish interface infor-
mation about the GridRPC components.

� Globus-I/O enables secure communication using GSI,
providing blocking and non-blocking I/O that is inte-
grated with Globus threads. In Ninf-G, the client and
remote executable communicate with each other using
Globus-I/O.

4.2.2 Using Ninf-G to Implement GridRPC

As in NetSolve, the Ninf-G design allows direct support for
the GridRPC model and API. The steps in making an actual
Ninf-G GridRPC call can be broken down into those shown
in Figure 2.

1. Retrieval of interface information and executable
pathname. The client retrieves this information reg-
istered in the MDS using the library signature as a key.
The retrieved info is cached in the client program to
reduce the MDS retrieval overhead.

2. MDS sends back the requested information.

3. Invoking remote executable. The client invokes the re-
mote executable via the Globus GRAM, specifying the
remote executable path obtained from the MDS and a
port address that accepts the callback from the remote
executable. Here, the accepting port authenticates
its peer using Globus-I/O, preventing malicious third
party attacks as only the party that owns the proper
Globus proxy certificates derived from the client user
certificate can connect to the port.

4. Remote executable callbacks to the client. The re-
mote executable obtains the client address and the port
from the argument list and connects back to the client
using Globus-I/O for subsequent parameter transfer,
etc. Subsequent remote executable communication
with the client will use this port.

5. Related Work

The concept of Remote Procedure Call (RPC) has been
widely used in distributed computing and distributed sys-
tems for many years [7]. It provides an elegant and sim-
ple abstraction that allows distributed components to com-
municate with well-defined semantics. RPC implemen-
tations face a number of difficult issues, including the
definition of appropriate Application Programming Inter-
faces (APIs), wire protocols, and Interface Description Lan-
guages (IDLs). Corresponding implementation choices lead
to trade-offs between flexibility, portability, and perfor-
mance.

A number of previous works has focused on the de-
velopment of high performance RPC mechanisms either
for single processors or for tightly-coupled homogeneous
parallel computers such as shared-memory multiproces-
sors [10, 6, 17, 5]. A contribution of those works is to
achieve high performance by providing RPC mechanisms
that map directly to low-level O/S and hardware functional-
ities (e.g. to move away from implementations that were
built on top of existing message passing mechanisms as
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in [8]). By contrast, our work on GridRPC targets heteroge-
neous and loosely-coupled systems over wide-are networks,
raising a different set of concerns and goals.

A number of technologies provide ways for applica-
tions to be structures as sets of distributed objects, such as
CORBA and Java RMI, where those objects communicate
via remote method invocations. Therefore, those systems
support RPC programming. However, their goal is much
broader, which comes at the expense of software simplicity
and light footprint, which are both among our goals. In pre-
vious work, we have conducted quantitative and qualitative
comparisons of CORBA technology with our NetSolve and
Ninf systems, in the context of RPC programming for scien-
tific computing [24]. We found several compelling reasons
(namely IDL complexity, IDL expressiveness, protocol per-
formance, software footprints) not to re-use distributed ob-
ject technology, but rather to focus on a simple, lightweight
implementation of RPC functionality that meets the needs
of scientific computing.

A number of experimental systems are related to our
work on NetSolve and Ninf, such as RCS [3] and
Punch [19]. Those systems seek to provide ways for Grid
users to easily send requests to remote application servers
from their desktop. Our work on GridRPC seeks to unify
those efforts. This paper takes the first step by propos-
ing a recommendation for a standard GridRPC API. An-
other key component of an RPC system is its IDL. NetSolve
and Ninf both have two different IDLs with different trade-
offs between complexity and expressiveness. We are cur-
rently working on an IDL definition for GridRPC. Unlike
CORBA, we do not require that client software be upgraded
(re-compiled) with new RPC stubs when servers offer new
services. This requires that the IDL stubs (or at list the sec-
tion that is used on the client side for argument marshaling)
be downloaded and executed at runtime. NetSolve and Ninf
provide this capability with simple runtime interpretation
of the IDL language. Another approach is for IDL stubs to
contain code that can be dynamically linked and executed,
as it is done in Jini. For reasons of cross-language porta-
bility, we believe that the GridRPC IDL should follow the
Ninf/NetSolve model. We are currently investigating XML
schemas for the GridRPC IDL.

This work is also related to the XML-RPC [26] and
SOAP [22] efforts. Those systems use HTTP to pass XML
fragments that describe input parameters and retrieve output
results during RPC calls. In scientific computing, parame-
ters to RPC calls are often large arrays of numerical data
(e.g. double precision matrices). The work in [14] made it
clear that using XML encoding has several caveats for those
types of data (e.g. lack of floating-point precision, cost of
encoding/decoding). A solution is to use a hybrid protocol
that may use an XML skeleton to describe data being sent,
but that would send binary data as “attachments”. Based

on the NetSolve and the Ninf protocols, we are currently
defining a GridRPC wire protocol.

Finally, our work on GridRPC fits in the framework of
the Global Grid Forum Research Group on Programming
Models [13, 15]. That venue allows us to communicate our
proposals and findings to the Grid community.

6. Discussion and Conclusions

We have presented a preliminary work in defining a
model and API for a grid-aware RPC mechanism. Besides
enabling individual applications to be distributed and allow-
ing the different parts to interact, remote procedure invoca-
tion is a fundamental capability that will enable many other
capabilities to be built. Such capabilties include network-
enabled services that are persistent and discoverable in
the environment, and component architectures where pre-
defined or application-specific components must interact
through well-known ports or interfaces. The inherent nature
of invoking a remote procedure across a network connection
(rather than on a stack) means that only coarse grain calls
will be appropriate and that computation/communication
ratios will be a driving factor. This reflects the fundamental
fact that grid environments present a heterogeneous com-
munication hierarchy across machines and networks.

In all software systems, there is a fundamental choice
between performance and flexibility. The choice was made
here to preserve performance rather than adopt a very flex-
ible but heavyweight protocol based on XML document
transfer. This does not preclude the use of XML internally
but it also does not require its use by exposing it through
the API. While this may currently limit the ease of adapta-
tion for GridRPC codes, GridRPC is now very bandwidth
efficient which can be a key issue for large-scale, high-
performance applications. We note that as XML evolves,
it may eventually allow binary fields of arbitrary length, at
which point, its use may become more attractive.

While the model and API presented here is a first-step
towards a general GridRPC capability, there are certainly
a number of outstanding issues regarding wide-spread de-
ployment and use. The first is simply discovery. Currently a
remote procedure is discovered by explicitly asking a well-
known server for a well-known function through a name
string lookup. Establishing this function-to-server mapping
is all that the user cares about and, hence, the GridRPC
model does not define how discovery is done. For a wide
variety of applications, domains, and institutions, a straight-
forward discovery mechaism such as the NetSolve Agent
will be completely sufficient. Other applications, however,
may need to look for appropriate servers over a wider, open-
ended grid environment. In this case, discovery via the
Globus MDS may be more suitable. Applications may also
want to request functions or services by type rather than
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name. In this case, function signature meta-data schemas
will have to be defined to facilitate such discovery. Hence,
while the GridRPC API should not define how discovery
is done, there may be a need for an application to express
general discovery constraints.

Scheduling is also another issue. Currently individual
RPCs are processed independently. The actual schedul-
ing of the remote invocation is unilaterally determined by
the daemon honoring the RPC request. Clients, however,
may have scheduling constraints to meet their processing
requirements. If a remote call entails submitting a batch job,
the client may at least want to know what the queue length
is, or have some notion of the expected time of completion.
Clients may also need to co-schedule multiple RPCs. A
client may not want to schedule two (or more) RPCs un-
less they can be scheduled at the same time, or at least
within some constraint. While co-scheduling is a funda-
mental capability, the decreased probability of being able to
succesfully co-schedule (especially on difficult-to-acquire
resources) will limit its use to those cases that absolutely
require it.

At this early stage of development and use, applications
will only use GridRPC in shallow call trees, e.g., making
one call to a service provided at one remote location. As
such a capability becomes more stable and available, how-
ever, it is conceiveable that applications will be built with
arbitrary call depths. While fault-tolerance and security
are important for shallow cases, call trees of arbitary depth
will require some notion of transitive or composible fault-
tolerance and security.

Currently fault-tolerance is accomplished by check-
points, rollbacks and retries. In any larger, distributed en-
vironment, an event service may be useful to manage can-
cellations and rejections along a call tree and other such as-
pects.

Security will require a transitive delegation of trust as de-
scribed in [1] and [2]. We note that cancellation of a secure
RPC could require the revocation of delegated trust. This is
currently not considered in these documents. Signing and
checking certificates on an RPC represents an overhead that
must be balanced against the amount of work represented
by the RPC. Security overheads could be managed by es-
tablishing secure, trusted domains. RPCs within a domain
could dispense with certificates; RPCs that cross domains
would have to use them. Trusted domains could be used to
limit per-RPC security overheads in favor the one-time cost
of establishing the domain.

While these larger issues may be on the horizon, they
should not be allowed to overshadow the importance of
the development and use of a practical GridRPC capabil-
ity. Such a capability will produce a body of experience
that will sort out the priorities for future work.

7. Security

A brief discussion of general security issues appears in
Section 6.
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A GridRPC API Specification

A.1 Initializing and Finalizing Functions

int grpc_initialize( char * config_file_name);
int grpc_finalize();

A.2 Remote Function Handle Management Functions

int grpc_function_handle_default(grpc_function_handle_t * handle,
char * func_name);

int grpc_function_handle_init(grpc_function_handle_t * handle,
char * host_name, int port, char * func_name);

int grpc_function_handle_destruct(grpc_function_handle_t * handle);
grpc_function_handle_t * grpc_get_handle(int sessionId);

A.3 GridRPC Call Functions

int grpc_call(grpc_function_handle_t *handle, ...);
int grpc_call_async(grpc_function_handle_t *handle, ...);
int grpc_call_argstack(grpc_function_handle_t *handle, ArgStack *args);
int grpc_call_argstack_async(grpc_function_handle_t *handle, ArgStack *args);

A.4 Asynchronous GridRPC Control Functions

int grpc_probe(int sessionID);
int grpc_cancel(int sessionID);

A.5 Asynchronous GridRPC Wait Functions

int grpc_wait(int sessionID);
int grpc_wait_and(int * idArray, int length);
int grpc_wait_or(int * idArray, int length, int * idPtr);
int grpc_wait_all();
int grpc_wait_any(int * idPtr);

A.6 Error Reporting Functions

void grpc_perror(char * str);
char * grpc_error_string(int error_code);
int grpc_get_error(int sessionID);
int grpc_get_last_error();

A.7 Argument Stack Functions

ArgStack *newArgStack(int maxsize);
int pushArg(ArgStack *stack, void *arg);
void *popArg(ArgStack *stack);
int destructArgStack(ArgStack *stack);
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